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Abstract--The system mean void fraction model's principle virtue is its simplicity. The model converts the 
two-phase evaporating or condensing flow system into a type of lumped parameter system, generally 
yielding simple, closed form solutions in terms of the important system parameters. The particular 
applications of the model which are demonstrated in this paper are for a class of transient flow problems 
where complete vaporization or condensation takes place, and where the system mean void fraction can be 
considered to be time-invariant. This assumption uncouples the problem from the transient form of the 
momentum principle, an analytical simplification of considerable magnitude. The specific transients under 
consideration are caused by changes in the inlet flowrate. For evaporating flows, these transients are the 
effective liquid dry-out point, and the outlet flowrate of superheated vapor. For condensing flows, they are 
the effective point of complete condensation, and the outlet flowrate of subcooled liquid. 

INTRODUCTION 

The ability to predict the transient responses of two-phase evaporating or condensing flow 
systems is of considerable importance as it relates to both system design and control, whether 

the system is associated with nuclear or conventional power generation, refrigeration, or 

chemical processing. 

Evaporating flow systems 
For evaporating flow systems, some of the past efforts include Hudson, Atit & Bankoff's 

(1%4) studies of the void fraction response to changes in power input and inlet flowrate, Zuber 

& Staub's (1%6) investigation of void fraction propagation and wave form under oscillatory 

conditions, and Hancox & Nicoll's (1971) predictions of void fraction distributions in non- 

steady situations including heat flux modulation. Additional efforts include Gonzalez-Santalo & 

Lahey's  (1973) investigation of local flow and quality responses for time varying inlet flowrates, 
and St. Pierre's (1965) study of the frequency response of void fraction to sinusoidal power 
modulation. 

Essentially, in each of the above mentioned investigations, only partial evaporation was 

considered to take place in the evaporator; thus the flow quality leaving the system was less 

than unity. With respect to the specific transient phenomena under consideration in this paper, 
these references however, have only limited implications; in part because they deal with flow 

systems involving only partial evaporation, and in part because they consider different transient 
flow phenomena than what is presently under consideration. 

Condensing #ow systems 

Because of the two-phase flow similarities in both processes, it seems reasonable to expect 
some similarities to exist between corresponding transient and flow instability manifestations 
for evaporating and condensing flow. Various types of instabilities have been reported for 

condensing flow; Vild, Schubert & Snoke (1%8) investigated condenser stability for a space 
power system. Soliman & Berenson (1970) studied flow stability in both horizontal and vertical 
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condenser tubes, concentrating primarily on pressure oscillations. Doroshchuk & Frid (1969) 
reported the utilization of the outlet flowrate oscillations from a condenser as an oscillatory 
inlet source for a study of evaporator stability. Schoenberg (1966) studied the frequency 
response of the inlet pressure and the point of complete condensation to sinusoidally varying 
inlet flowrates for a gas cooled mercury condenser. 

There appears to be no reported work which has been directed toward the particular 
transient flow phenomena under consideration in this paper. In fact. condensing flow transients 
have apparently received very little attention as compared to their evaporating flow counter- 
parts. 

Methods of analysis 
The generally accepted methods of analysis for two-phase flow are extensions of those 

already known for single phase flows; namely the application of the momentum and con- 
servation of mass and energy principles, incorporating various simplifying assumptions, in an 
effort to obtain governing equations which are mathematically tractable. Although there are a 
variety of sub-models, the four major types of two-phase flows models listed by Collier (1972) 
and Wallis (1969) are the homogeneous flow model, the separated ~tow model, the drift-flux 
model, and the various ~low pattern models. These models vary in complexity, and in general, 
for transient evaporating or condensing flows, result in a system of coupled partial differential 
equations. 

Normally, a prerequisite to the formulation of any theoretical model which describes a 
certain physical phenomenon, is an understanding of the various mechanisms involved. 
However, when a particular mechanism influencing the phenomenon is very complex, or is not 
completely understood, it is sometimes possible to formulate a simplified model of the 
phenomenon which lumps the mechanism's effects into a single, determinable parameter. Such 
simplifications usually render the model more amenable to analysis, although they often place 
definite restrictions on the accuracy of the predictive results of the model. Therefore, the 
success of any theoretical model must be ultimately judged by its ability to predict the 
behaviour of the phenomenon, and to provide insight into the relative influence of the various 
physical and system parameters associated with the phenomenon. 

The system mean void fraction model has been formulated in the spirit of the above 
philosophy. A variety of complicated flow patterns normally exist simultaneously in most 
two-phase evaporating or condensing flow processes; especially if complete vaporization or 
condensation takes place. Therefore, the complexity of the physical mechanisms involved is 
obvious, and a formulation of the transient form of the momentum principle for such processes 
is equally complex. 

The system mean void fraction model is simpler than any of the four types of two-phase 
flow models mentioned above, in fact, its simplicity is its principle virtue. This model results in 
ordinary rather than partial differential equations. Obviously, the simplifications involved in the 
present form of the model place certain restrictions on its applicability; the major restrictions 
being the inability of the model to either predict or take into account specific localized 
phenomena. However, the model contains no empirical constants as such, and converts the 
two-phase evaporating or condensing flow system into a type of lumped parameter system, with 
an interesting range of transient flow applications as will be demonstrated. 

SYSTEM MEAN VOID FRACTION MODEL 

Certain aspects of this model were initially presented by Wedekind & Stoecker (1968). 
However, at that time, because various implications of the system mean void fraction were not 
as fully understood, it was not envisioned that the concept had the potential capability of being 
extended to include flow transients for condensing as well as evaporating flow. Therefore, the 
concept as originally presented was somewhat obscured by the fact that it merely represented 
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a simplifying assumption in the formulation of a theoretical model which was amenable to 
solution. At this point in time however, with increasing experimental evidence of its generality 
to two-phase evaporating and condensing flows, a more formal presentation of the model seems 

warranted. 

Various types of void fractions 
In an effort to add both physical clarity and perspective to the model and its applications, a 

brief discussion of void fraction, with specific reference to its various levels of detail, is in 
order. 

Local void fraction. Considering the continuously varying flow patterns which exist in 

two-phase liquid-gas flows, as well as the stochastic nature of the flow process, from a 
macroscopic Eulerian perspective, at an arbitrary point within the flow channel, an observer 
would detect discrete phase changes from one instant of time to the next. For example, the 
instantaneous local void fraction, a = a(r, 0, z, t), would be a discrete valued function of time, 
intermittently taking on values of zero or unity depending upon the particular phase which was 
instantaneously present. 

Volumetric mean void fraction. The volumetric mean void fraction, aL,, represents the 
instantaneous value of the local void fraction, a, averaged over a given sampling volume, V; 
thus 

a~=a~( t )=-~  a ( r , O , z , t ) d V .  [1] 

Most void fraction detectors sample a finite volume, even though for some detectors the 
sampling volume may be quite small. Therefore, for a finite volume, the volumetric mean void 
fraction loses much of the discreteness of the local void fraction and becomes more of a 
continuous function of time. However, because of the stochastic nature of the two-phase flow, 
it will still exhibit amplitude fluctuations. Jones & Zuber (1975) have investigated the statistical 
characteristics of these void fraction fluctuations as they relate to various flow patterns. 

Area mean void fraction. The area mean void fraction, aa, represents the instantaneous 
value of the local void fraction, a, averaged over the cross-sectional area of the flow channel, 
A; thus 

t~ = a~(z, t) = l fA a(r, O, z, t) dA . [2] 

Like the volumetric mean void fraction, the area mean void fraction will also exhibit amplitude 
fluctuations as a consequence of the stochastic nature of the two-phase flow process. This is the 
most common type of void fraction found in the literature, common because it is ideally suited 
for one-dimensional analyses. 

System mean void fraction 

The system mean void fraction, as, will be defined here as representing the instantaneous 
value of the local void fraction averaged over the entire two-phase region under consideration; 
thus it is a special case of the volumetric mean void fraction. It can also be expressed in terms 
of the area mean void fraction averaged over the length, s r, of the two-phase flow channel under 
consideration; thus 

oq = ors(t)---7 J=o ° t a ( z ' s a ~  t ) d z .  [3] 

This definition assumes that z = 0 represents the beginning of the two-phase region under 
consideration. Again it is recognized that even for what is traditionally accepted as steady state 
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conditions, the system mean void fraction, as, will manifest amplitude fluctuations due to the 
stochastic nature of the two-phase flow. 

Systems with complete vaporization or condensation. For the two-phase evaporating or 
condensing flow system where complete vaporization or condensation takes place, the effective 
length of the two-phase region, r, will be designated by the symbol, r/. It is clear that if the 

system is undergoing a flow or a heat-flux transient, then the length of the two-phase region 
would be a function of time; thus r /= r/(t). However, even for what would conventionally be 
considered steady state conditions, the stochastic nature of the two-phase evaporating or 
condensing flow process will cause random fluctuations in the length of the two-phase region, 
r/(t). These fluctuations have been measured experimentally by Wedekind (1971). 

In an effort to separate out the random fluctuations from the deterministic transients, an 
approach similar to what is used for describing turbulent flow is used; that is, time averaged 
quantities where the averaging time is large enough to eliminate the stochastic fluctuations, but 
short enough not to interfere with the deterministic transients. It is important to note that the 
term fluctuation is in reference to random behavior only and does not preclude the existence of 
a deterministic oscillatory behavior such as might arise in response to a sinusoidal type inlet 
flowrate. Therefore, the symbols O(t) and 6s(t) represent the non-fluctuating effective length of 
the two-phase region and the non-fluctuating system mean void fraction respectively;§ thus 
from[3], 

ds(t) -= ~ ('~"~ d~(z, t) dz. [4] 
~(t) J~=o 

From this point on, only non-fluctuating quantities will be considered. Therefore, in subsequent 
references to these quantities, no distinction will be made. 

Implications o[ time-invariance. The remaining part of this paper will be directed at the 
class of transient two-phase evaporating and condensing flow problems where complete 
vaporization or condensation takes place, and where the system mean void fraction, ffs, is 
time-invariant (independent of time). A condition sufficient for this assumption to be valid is 
that the area mean void fraction, aa(z, t), be expressible as a function of a single dimensionless 
variable, ~:; that is 

where 

~a(Z,  t )  = ~a(~) , [5] 

(--- z/~(t). [6] 

This means that the independent variables z and t must enter into the expression for the area 
mean void fraction in a particular manner. A common example of being able to express a 
function of two independent variables as a function of a single new variable, which is itself a 
specified function of the two original variables, is the type of similarity relationships encountered 

in boundary layer theory. 
The possibilities of the existence of such a similarity relationship have been investigated by 

Wedekind (1965). The conclusions were, that although physically such a relationship could not 
be satisfied exactly, the utilization of the similarity relationship would not lead to unacceptable 
errors, even for such extreme conditions as a 20 per cent step change in the inlet flowrate of the 
evaporating or condensing fluid.¶ This conclusion was arrived at by considering worst case 
situations, and estimating an upper and lower bound to the similarity relationship. 

§Although it is beyond the scope of this paper, the implications of the fluctuating component of the system mean void 
fraction to other observed stochastic two-phase evaporating flow phenomena has been investigated by Wedekind & Beck 
(1974). 

¶Strictly speaking, the analysis was done for evaporating flow; however, the extension to condensing flow seems to be 
equally valid. 
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From a physical perspective, the time-invariance of the system mean void fraction during a 
particular flow transient requires a specific redistribution of the liquid and vapor within the 
two-phase region. The amount of redistribution depends upon the magnitude of the flow 
change, and the rate at which the redistribution takes place must be much greater than that of 
the flow transient. Because of the order of magnitudes of the liquid and vapor velocities 
involved in most applications, the redistribution mechanism can not be dependent solely on the 
liquid velocity;'it would be much too slow. Therefore, the much higher vapor velocity must be 
involved somehow in the liquid/vapor redistribution process in order for it to be fast enough. 

It is recognized that the above qualitative description is incomplete and thus not very 
satisfying; but such is the current understanding of the redistribution mechanism. However, as 
will be demonstrated in a later section, the validity of assuming that the system mean void 
fraction is invariant with time is clearly established by the fact that theoretical models utilizing 
the concept are capable of accurately predicting results which can be experimentally measured. 

It is also important to recognize the physical implications of the system mean void fraction 
simplification. It implies that for the class of transient phenomena for which the time invariance 
is valid, the transient form of the momentum principle is not important, thus indicating that the 
transient phenomena are governed by thermal mechanisms, that is, heat transfer and the 
conservation of mass and energy principles. 

What is needed from the momentum principle however, is sufficient information to evaluate 
the system mean void fraction. In terms of its definition, as per [4], an analytical determination 
of its magnitude requires a knowledge of the axial distribution of the non-fluctuating area mean 
void fraction, da(Z, t), over the length of the two-phase region, 7. Analytical models by Levy 
(1%0), Fujie (1964) and Zivi (1%4) yielding this information require the application of the 
steady state form of the momentum principle, which yield a relationship between the area mean 
void fraction and the mean flow quality. The only additional information required is an estimate 
of the axial distribution of heat flux over the length of the two-phase region. Examples of the 
analytical determination of the system mean void fraction for both evaporating and condensing 
flows are given in the Appendix. 

To summarize then, the assumption that the system mean void fraction is time-invariant 
during a particular two-phase evaporating or condensing flow transient implies that the transient 
form of the momentum principle is unnecessary to the solution of the problem. Therefore, only 
the steady state form of the momentum principle is required. Considering the complexity of the 
two-phase flow process, this represents a simplification of considerable magnitude. 

APPLICATION TO EVAPORATING FLOW TRANSIENTS 

This section of the paper is directed at the application of the system mean void fraction 
model to predict the transient responses of two-phase evaporating flow systems where the 
transients are caused by changes in the system inlet flowrate. The particular class of evaporat- 
ing flow system under consideration here is one where complete vaporization takes place, and 
where the system mean void fraction, ~s, is assumed to be invarient with time. The two specific 
system responses to be considered are those of the mixture-vapor transition point (effective 
liquid dry-out point), and those of the outlet flowrate of the superheated vapor, the second 
being dependent upon the first. 

Introduction 
A schematic of the evaporating flow system is shown in figure 1. In addition to the system 

mean void fraction assumption, it will be assumed that there is some effective position in the 
evaporator where the last of the liquid is evaporated. Therefore, effects of entrainment are 
considered negligible; meaning that the dimensionless vapor velocity must be below the critical 
value for the onset of entrainment as established by Steen & Wallis (1964). This type of 

MF Vol 4. No I--H 



,02 0 L w DEK, D, L . H A T T . n d .  T .ECK 

lit Z 

Two-Phase Region - - L ~  Region " ~  

- I  r "  L . 

Figure 1. Schematic of horizontal evaporating flow system. 

effective liquid dry-out point or mixture-vapor transition point has been observed and pho- 
tographed by Wedekind & Stoecker (1%8). 

The evaporating system model will be formulated around the following simplifications: 
1. Negligible effects of entrainment. 
2. System mean void fraction invariant with time. 
3. Random fluctuations due to the stochastic nature of the two-phase flow process are 

assumed not to influence the deterministic transients. 
4. The spatially averaged evaporator heat flux is time-invariant. 
5. Viscous dissipation, longitudinal heat conduction and changes in kinetic energy are 

neglected. 
6. The specific enthalpies and densities of the liquid and vapor are considered to be 

saturated properties, independent of both axial position and time, and evaluated at the mean 
system pressure. 

Conservation of  mass and energy principles 

As mentioned earlier, the assumption of the system mean void fraction being invariant with 
time eliminates the need for the transient form of the momentum principle, although the 
numerical evaluation of the system mean void fraction requires the steady-state form of the 
momentum principle. However, when the governing equations for an evaporating flow system 
are formulated in terms of the system mean void fraction, only the conservation of mass and 
energy principles are directly involved. 

Two-phase region. Using the system mean void fraction model, and incorporating the 
foregoing simplifications, the conservation of mass principle, simultaneously applied to the 
liquid and vapor in the two-phase region, can be expressed as 

d {[p(1 - ,i~) + p'6~]A,~l(t)} = tfi,(z, t)~=o - rfi*. [7] 

Physically, the expression on the L.H.S. of [7] represents the instantaneous time rate of change 
of the mass of liquid and vapor within the two-phase region. The first term on the R.H.S. 
represents the instantaneous rate at which mass enters the two-phase region, and the second 
term represents the instantaneous rate at which mass leaves the two-phase region relative to the 
transition point boundary. 

Similarly, the conservation of energy principle, simultaneously applied to the liquid and 
vapor in the two-phase region, can be expressed in terms of the system mean void fraction as 

d {[ph(1 - 6~) + p'h'6~lA,fl(t)} = fqP(l(t) + {[h (1 - .~) + h ')~]fflt (2, t)}z=o - -  h'ffl *t. [81 
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where fq represents the spatially averaged evaporator heat flux; defined as 

1 f~(t) 
L -= ~-~  L=o L dz. [9] 

The meaning of the L.H.S. of [8] is that it represents the instantaneous time rate of change of 
the thermal energy of the liquid and vapor within the two-phase region. The first term on the 
R.H.S. represents the instantaneous rate at which energy is being added to the two-phase region 
in the form of heat, the second term represents the instantaneous rate at which thermal energy 
enters the two-phase region by virtue of the inlet mass flowrate, and the last term represents the 
instantaneous rate at which thermal energy leaves the two-phase region, by virtue of mass 
leaving, relative to the transition point boundary. 

Superheated vapor region. Assuming the vapor density in the superheat region is essentially 
constant, and that for all practical purposes it can be approximated by that of the saturated 
vapor, the conservation of the mass principle applied to the superheat region can be expressed by 

d{p'At[L - ~(t)]} = th* - rh,(z, t)~=L. [lO] 

Physically, the L.H.S. of [10] represents the time rate of change of the mass in the superheat 
region, the first term on the R.H.S. represents the mass flowrate entering from the two-phase 
region relative to the transition point boundary, and the second term represents the mass 
flowrate of superheated vapor leaving the evaporator. 

Transient response of mixture-vapor transition point (effective liquid dry-out point) 
Although this particular application has been presented in an earlier paper by Wedekind & 

Stoecker (1968), it will be outlined again here as one of the four particular applications to be 
presented, primarily because its inclusion is important to the completeness and symmetry of the 
presentation. 

The transient response of the transition point to a change in the system inlet flowrate can be 
predicted from the governing differential equations. This will be done in general, and then for 
the Special case where the inlet flowrate can be expressed as an exponential function of time. 
To confirm the utility Of the model, its predictions will then be compared to experimental data. 

System equations; arbitrary inlet flowrate. Consistent with the system simplifications stated 
earlier, [7] and [8] can be combined to yield the following differential equation governing the 
transient response of the mixture-vapor transition point (effective liquid dry-out point), fi(t), in 
terms of the system inlet flowrate, tilt(z, t)~=0: 

d~(t) + l_~(t )  = (1-220) 
dt ~ p(l - as)A, r~,(z, t)~=0, [11} 

where re is the system time constant for evaporating flow and defined as 

_ p(l - ds)At(h'- h) 
're - -  ~ p  [12 ]  

and 22o represents the inlet flow quality. It should be pointed out that the system time constant 
for evaporating flow, ~'e, can be thought of as representing the time required to evaporate the 
liquid which is present within the two-phase region at any instant of time. More detail as to the 
physical significance of the time constant is given by Wedekind & Stoecker (1968). 
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The general solution to [11], for an arbitrary inlet flowrate, is given by 

( 1 - - ~ o )  f f  . J + - e-C~/.) ,  ~(t) = p(l - ~)A, e-~/~')' =oe ~/',)~ fit,(z, 7)~=o o7 r/i [13] 

where the initial condition, ~i, is given by 

~(t),=o = ~i. [14] 

Exponential  inlet ltowrate. As a special case, consider the inlet mass flowrate, fitt(z, t)~=o, to 
be adequately represented by the following exponential function of time: 

fitt(z, t)z=o = fitt.t + ( fitt.i- fit,.t) e-"/"  m>' . [15] 

where z,,, is the time constant associated with the inlet flowrate, and the subscripts, i, and, [, 
refer to the initial and final inlet flowrates respectively. 

Substituting [15] into [13], and integrating, the transient response of the effective liquid 
dry-out point, ~(t), becomes 

where 

and 

~ ( t )  - ~1 = e - . / . . ) t  + 1 {e -¢1/',)' - e -('J',.)<l/',)r} [16] 

(1 - &)(h '  - h) _ 

: L P  " ' "  

(1 - ;To)(h' - h )  _ 
~ t  = L P  m,,, .  [171 

Note that the situation where (~'e[~'r,)--> ~, corresponds to the special case of a step change in the 
inlet flowrate. 

Comparison with experimental data. As has already been mentioned, the results of an 
experimental study of the transient response of the mixture-vapor transition point have been 
reported earlier in considerable detail. Therefore, a detailed description of the experimental 
apparatus will not be presented here. However, the evaporator test section was a single, 
electrically heated, horizontal glass tube approx. 10 m long, with an inside diameter of 1.0 cm. 
As a means of demonstrating the utility of the model to predict these responses, the 
experimental results of a decrease in the inlet flowrate for Refrigerant-12 are compared to the 
model prediction of [16]. This comparison is displayed in figure 2, where considerable 
agreement is seen to exist. Fujie's (1%4) void fraction model was used to evaluate the system 
mean void fraction. However, as can be seen in the Appendix, other models yield very similar 
results. 

Transient response o[ the outlet vapor Ilowrate 
Sys tem equations; arbitrary inlet flowrate. It is clear from [10] that the outlet vapor flowrate, 

fitt(z, t)z=L, is coupled to the response of the mixture-vapor transition point;'~(t). Therefore, 
combining [7], [10] and [I 1] yield after rearrangement 

( h ' -  h) r/(t). [18]  
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Figure 2. Response of mixture-vapour transition point after a decrease in inlet flowrate. 

A general solution of the response of the outlet vapor flowrate to an arbitrary inlet flowrate can 
thus be obtained by combining the general response of the transition point, ,~(t), as expressed 

by [13], with the above expression. 
Exponential inlet flowrate. Again as a special case, consider the inlet mass flowrate, 

n~t(z, t)~=o, to be an exponential function of time. Thus, [16] will represent the transient 
response of the transition point to such an inlet flowrate. Substituting [15]-[17] into [18], yields 

after rearrangement 

~'(z't)~=L-rht'l=e-(~J'm'('/~,'t+ (~m)(1 -x° ) [ l - (~ ) ]{e -" /~ , " -e - (~ /~ )" / ' : } .  [19] 

] rot.i- mr./ "re - 1 

The above expression simplifies when, ( z J r m ) ~ ,  which corresponds to a step change in the 
inlet flowrate. 

Comparison with experimental data. The experimental apparatus used to obtain the tran- 
sient response of the outlet vapor flowrate to a change in the inlet flowrate was completely 
different from the apparatus used for the transition point response. A detailed description of 
this particular apparatus is described in previous work by Wedekind (1971). However, the 
specific evaporator test section consisted of nine, 1.0 m horizontal glass tubes arranged in a 
vertical serpentine configuration, electrically heated, having a total length of approx. 9 m, with 
an inside diameter of 0.84 cm. Typical results are depicted in figure 3 for Refrigerant-12. The 
agreement between the experimental data and the response predicted by the system mean void 
fraction model are quite reasonable. 

Further insight into the physical mechanisms behind the response characteristics of the 
outlet vapor flowrate to a change in the evaporator inlet flowrate can be obtained by examining 
the conservation of mass equations for both the two-phase and the superheated vapor region. 
Combining [7] and [10] in such a manner as to eliminate the mass flowrate, rh*, leaving the 
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Figure 3. Response of outlet vapour flowrate after a decrease in inlet flowrate. 

two-phase region relative to the transition point, boundary, yields 

rfi,(z, t)z=L = rfi,(Z, t):=0-- (p -- p')(l -- 6s)A, d~(t) 
dt 

[20] 

It can be seen from the above expression that the outlet flowrate of super-heated vapor, 
r~6z, t)z=L, is equal to the evaporator inlet flowrate, tht(z, t)==0, minus the net rate at which 
mass is stored in the evaporator as a result of liquid displacing vapor. With insight from [11], 
and the fact that (p > p'), the net storage rate in the evaporator is seen to be negative if the inlet 
flowrate decreases from a steady state configuration. This storage term causes a momentary 
delay to the decrease in the outlet flowrate of superheated vapor (in effect, a form of a 
momentary excess liquid hold-up within the evaporator). 

The inverse takes place if the inlet flowrate increases from a steady state configuration. 
However, once the mixture-vapor transition point, 6(t), has reached a new steady state 
position, the inlet and outlet flowrates will obviously be equal. 

APPLICATION TO CONDENSING FLOW TRANSIENTS 

This section of the paper is directed at the application of the system mean void fraction 
model to predict the transient responses of two-phase condensing flow systems. The two 
specific system responses to be considered are those of the effective point of complete 
condensation, and those of the outlet flowrate of subcooled liquid; where from a similarity with 
the evaporator case, the second is dependent upon the first. 

Introduction 
A schematic of the condensing flow system is shown in figure 4. In addition to the system 

mean void fraction being invariant with time, analogous to the evaporator, it will be assumed 
that there is some effective position in the condenser where the last of the vapor is condensed. 
This position may not be as clearly defined as for the evaporator, but such an effective position 
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z=O 
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Figure 4. Schematic of horizontal condensing flow system. 

can be conceived. This type of effective point of complete condensation or mixture-liquid 
transition point has been observed by Soliman & Berenson (1970). This effective transition 
point again will also be designated by the symbol, ~(t). Therefore, [4] is a valid expression for 
the system mean void fraction. Also, the same simplifying assumptions used in the evaporating 
flow system model are used for the condensing flow system. 

Conservation of mass and energy principles 
As with the evaporating flow system, the assumption that the system mean void fraction is 

independent of time eliminates the need for the transient form of the momentum principle. 
Therefore, only the conservation of mass and energy principles are directly involved. 

Two-phase region. Utilizing the system mean void fraction model, and incorporating the 
forestated simplifications, the conservation of mass principle, simultaneously applied to the 
liquid and vapor in the two phase region, will be identical to that of [7] for evaporating flow. 

The conservation of energy principle, simultaneously applied to the liquid and vapor in the 
two-phase region, can be expressed in terms of the system mean void fraction as 

d d--t {[ph (I - ffs) + p'h'ds]At~(t)} = -~P~( t )  + {[h(l - .f) + h'g]thJz, t)}~=o - heft* [21] 

where 17q represents the average condenser heat flux; defined by [9]. The physical meaning of 
each term in the above equation is term by term identical with that of [8], with the exception of 
the direction of heat transfer which is out of the two-phase region for condensing flow. 

Subcooled liquid region. The conservation of mass principle applied to the subcooled liquid 

region can be expressed as 

~t {PAt[L - ~(t)]} = tfi* - rh,(z, t)z=L. [22] 

With the exception of the fact that the fluid in the above equation is liquid, the physical 
meaning of each term is identical with that of [10]. 

Transient response of mixture-liquid transition point (effective point of complete condensation) 
System equations; arbitrary inlet flowrate. Consistent with the system simplifications stated 

earlier, [7] and [21] can be combined to yield the differential equation governing the transient 
response of the mixture-liquid transition point (effective point of complete condensation), ~(t), 
in terms of the system inlet flowrate, rfi,(z, t)~=o. 

d~(t___) + / ~(t) = 2____q__o rht(z, t)z=o [23] 
dt • p ' 6 s A t  
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where ~-~ is the time constant for the condensing flow system; defined as 

_ p'6~A,(h' - h) 
~',. = L p  [24] 

and ~o represents the inlet flow quality. For condensing flow, the system time constant, r~, can 
be thought of as representing the time required to condense the vapor which is present within the 
two-phase region at any instant of time. 

Equation [23] has a general solution 

: , ,~  _ Xo _, / , ,~,  e "/'c~ rh,(z, YL=o d3, + ~i e -°/ '~ '  71t~ ) - -  p' ff~At c =o [25] 

where the initial condition, ~i, is given by [14]. 
Exponential inlet flowrate. As a special case, consider the inlet mass flowrate, r~,(z, t )~o,  to 

be adequately represented by an exponential function of time. Therefore, substituting [15] into 
[25] and integrating, the transient response of the effective point of complete condensation, 
~(t), becomes 

where 

7j(t) - ~f = e_,/,cl, ~ 1 {e -"1"c1'- e ~'g'm}(l/'c}~} [26] 

and 

£o (h ' -  h) _ 
qi = [~p m,,I 

£o(h ' -  h) _ 
4 / -  L P  m,./. [27] 

Note that as with the evaporating flow, the situation where ( z , - I ' r , , )~  corresponds to the 
special case of a step change in the inlet flowrate. 

No direct experimental data exists at this time for the transient response of the effective 
point of complete condensation. However,  because the response of this transition point, -~(t), is 
directly coupled to the transient response of the outlet liquid flowrate, the foregoing model can 
be indirectly verified by experimentally measuring the response of the outlet liquid flowrate. 

Transient response of the outlet liquid flowrate 
System equation; arbitrary inlet flowrate. As was the case for evaporatiog flow, the 

transient response of the outlet liquid flowrate from a condenser, r~,(z, t)z=L, is directly coupled 
to the response of the transition point, fi(t). Therefore, combining [7], [22] and [23] yield after 
rearrangement 

[28] 

In a manner similar to that for evaporating flow, a general solution of the response of the outlet 
liquid flowrate to an arbitrary inlet flowrate can be obtained by combining the general response 
of the transition point, r~(t), as expressed by [25], with the above equation. 
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Exponential inlet flowrate. The transient response of the condenser outlet liquid flowrate, 
due to an exponential inlet flowrate can be obtained by substituting [15], [26] and [27] into [28] 
and rearranging; thus 

7__~c P 
rn'(z't)z=L-tn'4=e-(~J~"t~"4 ( r")  [ (~ )  - 1 ] ;(° {e-('~-x"')' - e-""~"}. [29] 

Again, the above expression reduces to the special case of a step change in inlet flowrate as 
( rc/ Zm) --> ~ .  

Comparison with experimental data. The ability of the system mean void fraction model to 
predict the transient response of the condenser outlet liquid flowrate has been investigated 
experimentally by Wedekind & Bhatt (1976), where a detailed description of the experimental 
apparatus is given. However, the condenser test section consisted of a single horizontal 
water-cooled copper concentric tube heat exchanger approx. 5 m long. The condensing flow was 
inside the inner tube which had an inside diameter of 0.8 cm. The experimental data shown here 
is for Refrigerant-12. Responses for both an increase, as well as a decrease in inlet flowrate will 
be presented. 

The response of the outlet liquid flowrate due to an exponential increase in the inlet flowrate 
is presented in figure 5. The agreement is quite reasonable, and the response is very interesting, 
especially the overshoot of the outlet flowrate immediately after the inlet flowrate change. 
Zivi's (1964) void fraction model was used to evaluate the system mean void fraction. The 
response of the outlet liquid flowrate due to an exponential decrease in the inlet flowrate, as 
depicted in figure 6, again manifests a sizeable overshoot. In fact, for a short period of time, the 
outlet liquid flowrate actually reverses its direction, flowing back into the condenser. 

As with evaporating flow, further insight into the physical mechanisms behind the overshoot 
characteristics of the outlet liquid flowrate to a change in the condenser inlet flowrate can be 
obtained by examining the conservation of mass equations for both the two-phase and the 
subcooled liquid region. Combining[7] and [22] in such a manner as to eliminate the mass flow- 

,E,~ 15 

w- 
d IE 

,E ~ 10 

N 

0 

~ a 
75 

Condensing Flow Test Number C-l 
Refrigerant-12 

p = 634 kN/m 2 ~o = 1.0 &s = 0.835 

mt,i = 4.54 g/s mt,f = 5.20 g/s ~'m = 0.42 s 

~q = 13.0 kW/m 2 ~ " 0.65 s d : 0.800 cm 

~ . ~  Measured Inlet  Mass Flowrate, mt(z,t)z=O 

~----oMeasured Outlet Liquid Flowrate, ~t(z,t)z=L 

Predicted by System Mean Void Fraction Model 

cK 

-10  
.. I I I I I I I I I 

-5 0 5 I0 15 
Dimensionless Time, tlT-c_ 

Figure 5. Response of outlet liquid flowrate after an increase in outlet flowrate. 
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rate, ra*, leaving the two-phase region relative to the transition point boundary, yields 

_ .  d~(t) 
ra,( z, t ) :~ L = ra,( z, t):=0- (p '  - p ) a s A t  -dr " [30] 

It can be seen from the above expression that the outlet flowrate of subcooled liquid, 
rat(z, t):=L, is equal to the condenser inlet flowrate, rat(z, t)==0, minus the net rate at which mass 
is stored in the condenser as a result of vapor displacing liquid. With insight from [23], and the 
fact that (p' < p), the net storage rate in the condenser is seen to be positive if the inlet flowrate 
decreases from a steady state configuration. This causes the outlet liquid flowrate to be 

momentarily smaller than the inlet flowrate (in effect, a form of a momentary liquid shortage in the 
condenser). It should be pointed out that the magnitude of this momentary overshoot is directly 

proportional to the liquid/vapor density difference. 
The inverse takes place if the inlet flowrate increases from a steady state configuration. 

Once the mixture-liquid transition point, ~(t), has reached a new steady state position however, 

the inlet and outlet flowrates will obviously be equal. 

SUMMARY AND CONCLUSIONS 

The s y s t e m  m e a n  v o i d  f r a c t i o n  m o d e l  converts the two-phase evaporating or condensing 
flow system into a type of lumped parameter system, generally yielding simple, closed form 
solutions in terms of the important system parameters. The major assumption in the model is 
that the system mean void fraction is time-invariant. This assumption uncouples the problem 

from the transient form of the momentum principle. 
The four specific transient responses considered in this paper are for tube-type evaporators 

or condensers, where complete vaporization or condensation takes place. All of the responses 
are initiated by changes in the inlet fiowrate of the evaporating or condensing fluid. For 
evaporating flows, the specific transients are the effective liquid dry-out point, and the outlet 
flowrate of superheated vapor. Similarly, for condensing flows, they are the effective point of 

complete condensation, and the outlet flowrate of subcooled liquid. 
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The ability of the model to accurately predict these transient responses has been demon- 
strated by experimental data. It is important to point out however, that the model as presented 
here cannot predict the random fluctuations which are inherent in the two-phase flow. The 
model seems to have the capability of accurately handling both step and slowly changing inlet 
flowrates. 

It is important to recognize that the system mean void fraction model does not contain any 
empirical .constants as such. Also, in the light of the various applications presented in this 
paper, the model is seen to embody a certain analytical simplicity, and yet maintain the 
capability of accurately predicting various transient phenomena associated with both evaporat- 
ing and condensing flows. These predictions include the influence of evaporator and condenser 
geometry, heat flux, flowrate, fluid properties and inlet conditions. This is borne out by 
experimental data, including the fact that, as was pointed out earlier, the data have been 
obtained from three distinctly different experimental apparatuses. 
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APPENDIX 

Evaluation of system mean void fraction 
Evaporating flow. For steady evaporating flow conditions, with a uniform heat flux,t the 

following relationship between flow quality, 2, and the dimensionless variable, ~, exists: 

.~ =.£o+ (1 - Yo)~. [311 

Substitution of this relationship into [4] for the system mean void fraction yields 

f l 1 f l 6, = &,(~) dE = ~ ~a(.~) d)7. [321 
=0 (1 - ~o)  =~o 

For steady flow conditions, Levy (1960), Fujie (1964) and Zivi (1%4) have proposed theoretical 
models relating void fraction and flow quality. Figure 7 displays a comparison of these three 
models with Hufschmidt's (1960) experimental data for horizontal flow of Refrigerant-12. While 
Fujie's and Levy's models appear to better represent Hufschmidt's experimental data, both 
models require numerical integration to obtain the system mean void fraction. However, Zivi's 
model can be used to express the system mean void fraction in a simple closed form; thus 

! + c 
6, = (1 - c) (1 - .%)(1 - c) 2 In {c + (1 - C)£o} [33] 

where the constant, c, is defined by c ~- { p , / p } : / 3 .  

tlf the heat flux is not uniform, although it would not be as accurate, an estimate could still be obtained by using this 
relationship. 
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A comparison of the calculated system mean void fraction using the above three models for 
the evaporating flow tests which are presented in this paper are shown below: 

Test number Levy's model Fujie's model Zivi's model 

E-I 0.863 0.856 0.881 
E-2 0.869 0.857 0.884 

Condensing flow. For steady condensing flow conditions,t the local flow quality may be 

expressed as 

= $o(1 - ~:). [34] 

Substituting this relationship into [4] yields the following expression for the system mean void 

fraction: 

f' 6, = 6,(~) d~ = 6a(~) dE [351 
=0 Y0 J~=o 

It will be assumedl" that the same models developed for evaporating flows are also valid for 
condensing flows. Therefore, a comparison of the system mean void fraction for the condensing 
flow data presented in this paper are shown below: 

Test number Levy's model Fujie'smodel Zivi's model 

C-I 0.825 0.819 0.835 
C-2 0.822 0.816 0.831 

Chato (1962) and Rufer & Kezios (1966) studied stratified flow condensation inside of a circular 
tube. Chato suggests an average value of 120 ° for the angle whose vertex is at the center of the 
tube, and which is subtended by the condensate. Similar results can be obtained from the work 
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Figure 7. Comparison of several void fraction vs flow quality models. 

tTbis can be substantiated by comparison with the experimental data of Sacks (1975) for adiabatic and condensing flows. 
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of Rufer and Kezios. The system mean void fraction, based on this angle of 120 °, is 0.805, 
which is in reasonable agreement with the previous values. Therefore, for simplicity, it is 
convenient to use Zivi's model for estimating the system mean void fraction, thus for condensing 
flow 

~ c { c } 
a~ = ( 1 - c ) + ~  In (1-  c).fo+ c [361 

where the constant, c, is defined by c = -  {p'lp} 213. 


